This article was originally posted on the Early Career Climate Forum in June 2017. We’ve all heard the phrase that science should be explained on the level of sixth- to eighth-graders to be understandable for a general audience, right? But who has ever tried to explain science to actual sixth- to eighth-graders? I can proudly say now I did, and I’ve only suffered minor bruises. A few weeks ago I was invited to a middle school in Norman, Oklahoma, where I live, to talk about climate change. Laura Vaughn, the school’s science teacher, and her social studies colleague had organized a two-hour guided inquiry lecture for their 280 seventh-graders, investigating with little guidance from teachers how climate change affects our lives and what we can do about it. Me and 11 other researchers and city employees had a table each in the school’s gym where we set up demonstrations to show, for example, how CO2 increases air temperature and causes ocean acidification, what tree rings can tell us about the earth’s past climate, and how clogged up stormwater runoffs can increase flood risk. I wanted to explain how climate extremes like drought, flood, or heat impact our agriculture, what climate change does to this, and what farmers can do to maintain a good harvest. Or, I should say, that was my plan. Explaining my work to peers is often hard enough. But talking about it to non-scientists — policy-makers, managers, or the general public — always seems infinitely more difficult for me. To help me become a better science communicator, I recently started a course with Toastmasters International, a non-profit that teaches public speaking and leadership skills. (I blog about my experiences with Toastmasters on my personal blog.) In every meeting, I throw myself into situations that improve my ability to speak clearly and coherently, to spot unnecessary jargon and then avoid it, whether it is a prepared speech or an spontaneous answer during a round of questions. I also participate in discussions with students, talk to people outside my discipline, and of course present my own research to people outside my field. But unlike these situations, Toastmasters feels like a more safe environment to make mistakes. We evaluate each other, comment on grammar, use of fill words, applaud what went well and give suggestions for what didn’t. No one is perfect, and everyone is there to improve. At a geography conference in Boston, I recently learned about the National Science Foundation (NSF) Research Experience for Undergraduates (REU) program. The ten-week long program, which run every summer, funds travel and housing for its participants, many of which applied at an REU program at a different university. The program doesn’t focus on collaborative research or communication per se but is meant to give undergraduate students a general taste of research and let them explore other disciplines, for example for graduate school. That said, some schools do run programs in which interdisciplinary work and communication are very much part of the deal. The REU program at the University of Central Florida, for example, sends student from different fields in groups to coastal communities in Belize to work with locals on environmental problems, like disaster management and ocean waste. Not only do students have to speak Spanish to participate. These supervised projects also train students to be open about their work and to avoid jargon when communicating with the public. A similar approach takes Clark University in Massachusetts with their REU program called HERO (Human-Environment Regional Observatory). Undergraduates study the impact of a tree planting program on wildlife, noise pollution, or air quality through tree surveys and interviews with residents, and present all their findings to the public, improving their own knowledge about human-environmental interaction and qualitative analysis, as well as their communication skills. At the University of Oklahoma (for example at the South Central Climate Science Center), REU students from any discipline can study weather and climate topics, like tornados, severe weather, or societal impacts of weather and climate extremes. Back to our middle school event. With 280 rambunctious students roaming around my station for two hours and throwing questions at me, my brain was constantly in the ropes trying to answer questions like “What part of climate change do you work with?” or “What are some solutions to prevent climate change or even reverse it?” Often I just didn’t know what to say. Not that I didn’t know the answer. I didn’t know how to simplify it enough. To reassure myself I often ended with “Does that make sense?”, upon which one student admitted “Well, not really…” throwing the ball back at me for a second attempt. Convoluted sentences with more than 15 words seemed to confuse students, and most jargon whatsoever threw them off immediately. To buy myself time I often kicked the question back to them: “What do you think how we can reduce climate change?” — which made magic happen! They would suggest reducing pollution, I asked them how we could do that, and together we went from talking about air quality and eating more veggies to biking to school instead of being driven by their parents. It was mentally exhausting but instead of preaching the monologue of bad fossil fuels and polar bears far away, I used their knowledge and focused on solutions they can contribute to. It was mentally exhausting, but what they eventually wrote down were not my answers but theirs. Laura Vaughn, the science teacher, later emailed me to say that some of her students told her my station was their favorite. Two weeks later I got invited again for presentations by the students. Each seventh grade science student designed a poster or powerpoint presentation of their favorite topic, and their social studies colleagues evaluated them. Many used the websites and online databases I had shared with the teacher, and some chose agriculture as their topic. One girl told me irrigation can be both be a blessing for farmers in times of drought but also a curse because it depletes the aquifer if farmers irrigate too much. I was delighted about how much they learned, and I was surprised how much I had learned, too. All photos by Toni Klemm.
![]() Welcome to part two of the series. My overall goal of being at Toastmasters is to be less nervous about public speaking. And while the study book is great at teaching me all kinds of things that help me be less nervous, there is nothing more effective than to actually doing a speech. You don’t learn to swim if you don’t get in the water. The ice-breaker (which I did several weeks ago, sorry about the delay) is a gentle way to get your feet wet without fearing to drown. It’s the first prepared speech everyone gives, and it’s by no means impossible. My assignment was to introduce myself (in four to six minutes), something we’ve all done over and over, but to create a talk with the basics of any speech: a beginning, body, and ending. The key was to not get carried away in details be selective to create an interesting theme, like unusual jobs during college, places you lived while growing up, or stories about boy- or girlfriends in school if you feel brave. Some dry (self-deprecating) humor also never hurts. And thankfully, notes are totally fine. I drafted my speech somewhere between midnight and 2 am (just like this blog post), read it aloud to my girlfriend to make sure things make sense and I stayed within four and six minutes, got her feedback, and improved over time. I decided to talk about growing up in East Germany (communism always seems like an interesting topic in the U.S.) and what traveling around Europe and the world meant and means for my family and me after the end of the wall. You can read the final version below. I’m happy to report that not only did people enjoy the talk (and asked me lots of questions after the meeting), but I was glad to see my jokes working and people laughing at the right moments. After four minutes and 32 seconds, everyone applauded and I sat down again, happy and relieved. Presenters, me included, often make the mistake of speaking faster or skipping slides when their speaking time runs out. We can never present all the information in as much detail as we would like to. Even if we had all the slides and all the time, our audience would just stop listen. But simple steps like focusing on a few things and keeping a basic structure can help people remember what’s important about my research. And if they found it interesting, maybe they’ll ask me for more. Toastmasters Lesson #1 , Feb 13, 2017 Growing up Behind the Wall I grew up on the third floor of a farm house, surrounded by big trees and lush fields of green on the edge of a small town in East Germany, called Pausa. Making hay, feeding sheep, and walking to school, much of growing up for me and my younger brother meant being outside. My hometown claims to be at the center of the earth, the place that everything else spins around, proudly symbolized by a huge, rotating, stained-glass globe on the roof of our town hall and proven by the earth’s axis sticking out of the ground in the basement underneath it. We even have an organization that takes care of lubrication, the Erdachsendeckelscharnierschmiernippelkommission. (I’m going to make that the word of the day one day!) Being at the center of the entire world, naturally there is adventure lurking in every direction. Sadly, our mode of transportation was far from ideal for long-distance traveling. This Trabant [holding up the Trabant model car] was literally one of two car models in East Germany, and with four people inside it felt about as small as this model. Of course, traveling in East Germany was also limited for another reason. Without formal invitation from a relative or friend “in the West”, there was no way we could get past the Iron Curtain. My mom remembered that every time her parents would take her and one of her three sisters on a vacation to Hungary, my grandma would point to the right as they went through Czechoslovakia and say to my grandpa: “I wish we could go to Austria.” When I was in second grade, someone decided, for reasons that were beyond my little mind, to combine East Germany and West Germany, which I liked because it meant I didn’t have to go to school on Saturdays anymore. With no wall to keep us from traveling (and soon better cars, too), my family started exploring the rest of Europe. Five years later, when I was 12, I had seen Florence, London, and Stockholm and most countries in between, some of them even two or three times. In 1995 — maybe because we ran out of places to see — my parents decided to book plane tickets for all of us across the pond to North America. I had never been inside of an airplane before, so I was very excited. In fact, all of us were, so we kept coming back, and the next few summer vacations were filled with road trips through national parks, gorgeous landscapes, and buzzing cities with skyscrapers and lots of people. We were stunned by the Grand Canyon, which looks even grander when you’re little, we watched Old Faithful in Yellowstone, we drove across the Golden Gate bridge and around the Great Lakes, visited Plymouth Plantation, and saw New York City from the top of the World Trade Center, twice. The second time during a visit in 1999, but the first time we managed do get up there and back to the airport despite only having a three-hour layover at JFK. German precision planning. By the time I graduated from high school, I had visited Canada, Mexico, and 39 out of the 50 US states. Exploring places must be in my family’s DNA. A few years later, before my mom went on a one-year journey across the Asia-Pacific region, my cousin and I hiked through a remote national park in Australia, with 40-pound backpacks and nothing but a small map with a dot that marked a cabin in the woods where we would spend the night. After finding our accommodation, by a pristine lake surrounded by mountains, we spent a night literally in the middle of nowhere, enjoying tranquility after a long day of travel. I eventually studied — no surprise — geography, like my mom did, because I wanted to learn more about this complex world we live on. After seven years in classrooms, though, the travel bug bit me again and I ended up here in Oklahoma, with a lot more geography to study and a lot more places to explore. As I am nearing graduation, I am reminded of the glass globe on our town hall slowly turning and watching the little dot that marks Pausa as it moves around, and being amazed by just how much of our world there is that I haven’t seen yet. ![]() This is the first part of a blog series. If you ever had to speak in front of a large audience or a small group of really important people (like say, your committee), you probably know how tough that can be. Talking coherently, avoiding fill words, and following a storyline or reasoning that people understand — speaking well is hard. I realized how much I had to work on this for myself last December. I had applied to be a student speaker at the University of Oklahoma's annual TEDx conference every January. I’ve been involved with TED for many years behind the scenes, translating subtitles of TED talk from English into German, and doing photography at TEDxOU since I started my Ph.D. in Norman. This was my moment to shine on stage — and I failed big time. Despite planning and preparing for over 6 months, collecting information and developing a storyline, the audition session went anything but smoothly. I stuttered, lost my trail of thoughts, forgot key points of my talk, and even went overtime. Not surprisingly I was not selected as a speaker. What did surprise me, though, was that the selection committee liked my topic, science communication, and I got invited to speak at next year’s TEDxOU as a regular speaker. ![]() All I need to learn until then is how to pull off the perfect TED talk. But being a good speaker helps for more than TED talks. I can become better at presenting my research at conferences, deliver elevator speeches, be more confident in my dissertation defense, or simply get a point across at a party or on the plane. So, in this blog series I will share some of my experiences, lessons learned, and funny stories along the way. In mid-January, I decided to take become a member of Toastmasters International, a non-profit that teaches speaking and leadership skills. I joined a group that two of my coworkers were already part of, at first as a visitor, and after a few weeks as a (paying) member. (Just to be clear, this series is not sponsored or endorsed by Toastmasters. I’m paying my membership fees just like everyone else and don’t get any special treatment for writing about it.) Toastmasters is a bit like school for grown-ups. Our group is a cheerful mix of a dozen or so researchers, business managers, and retirees, and in each of our weekly meetings there are one or two prepared speakers, a round of table topics — themed questions on topics like traveling, Christmas, or gardening that people need to answer on the spot — and the word of the day, selected by a group member for people to incorporate into their speeches. Someone leads the meeting while others carefully evaluate all speakers, keep an eye out for grammatical errors, fill words, if the word of the day was used, by whom, and how many times, and most importantly of all if people went over their allotted time. Or under. The rotating schedule is meticulously planned, to say the least. ![]() A few weeks after becoming a paid member I received my learning materials with ten projects on organizing a speech, choosing the right words, using body language to emphasize, or inspiring my audience. To finish all ten in one year I will need to do about one every month. So much for starters. Here we go. ![]() This article was originally posted on the Early Career Climate Forum in December 2016. On November 2nd and 3rd, the first ever National CSC Early Career Training was held at the University of Massachusetts Amherst. For two days, students from across the U.S. heard about peer reserach ranging from butterflies in North Carolina, paleoclimatology along the Gulf Coast, to the impact of wildfires on wild berries in Alaska, along with so much more. In case you missed it, Andrew Battles wrote a short summary a few weeks ago. But because a picture is worth a thousand words, here is a short video I made showcasing the training to give you more of an inside look and let some of the participants and organizers speak about their experiences and the purpose of the training and of the research conducted at the Climate Science Centers. Enjoy! ![]() There is this sketch of a Venn diagram with two non-overlapping circles, one being a person’s comfort zone, and the other one showing “where the magic happens”. A few months ago, my advisor sent me to a conference in Salt Lake City that felt exactly like this Venn diagram. While many of my early career co-workers were at a science communication workshop at Texas Tech University in Lubbock, Texas, I was en route to a joint conference on agricultural and forest meteorology, boundary layer climates, and biogeosciences. The areas might not reflect it as much, but I was way out of my comfort zone. ![]() And that was not the first time it happened. In October of 2013, I was at the 7th Graduate Climate Conference in Woods Hole, Massachusetts, a fun and relaxed student conference and one of the first conferences I ever talked about my own research idea. The only problem was, that entire sessions were dedicated to super-specific issues, like atmospheric dynamics, ocean biology, or aerosols. The three-day conference had one session on humans, climate, and policy, and a handful of posters about applied research (including my own). That was all. What was I doing at this meteorology nerdfest? (Admittedly, New England in the fall is off the charts beautiful, so at least from a photographic standpoint it was totally worth it!) ![]() What I didn’t understand in 2013 I learned this summer. After five days of talks about field campaigns, flux experiments, and instrument calibration, I understood that this work is not just essential in understanding how our atmosphere works or how plants react to global warming. This research can be the foundation of seasonal climate forecasts that researchers like me use to make decision tools for farmers. As an applied, interdisciplinary researcher, I should be outside my comfort zone. My job is not only to understand what users want and how decision tools that researchers like me try to create are used (or not used). I also need to understand the work of modelers, statisticians, agronomists, or anthropologists, to apply their methods, to better judge which climate models or statistical techniques work best for me, to appreciate their work, or simply to speak their language and understand their way of thinking. Afterall, I might be using their work for my research, or even more so be there future collaborator. ![]() This weekend, I am again at the 10th Graduate Climate Conference, this time in Washington state, presenting (again for one of the first times) results from my research. But between log cabins and cedar trees, this feels like a lesson-learned check. I’m still struggling to make sense of concepts, acronyms, and jargon, but not as much as I used to. My comfort zone became a little bigger. And as I’m listening I realize that these brilliant, creative, engaging, fascinating minds not only shape tomorrow’s climate research. They might also be the people I’ll be working with sooner or later. Check out: www.graduateclimateconference.com ![]() This post was originally written for the Early Career Climate Forum and posted in August 2016. Earlier this year, I wrote an ECCF blog about a fall semester undergraduate class at the University of Oklahoma (OU) that taught students about climate science, the impacts of climate change, and that gave them a look behind the scenes of the climate negotiations at the Paris COP21 meeting last December. Well, I’m happy to report that this fall this class is back — and it’s gotten even better. Starting August 17th, the South Central Climate Science Center (SCCSC) will be offering “Managing for a Changing Climate”, an interactive class based on the experiences and feedback from last fall. “Participants will hear from a wide variety of experts from both the research and management worlds”, says Aparna Bamzai, University Assistant Director at the SCCSC and coordinator of the course. They will teach lessons about the components of the climate system, including the range of natural climate variability and external drivers of climate change, in addition to impacts of a changing climate on sectors such as the economy, policy, ecosystems, and indigenous populations. ![]() The best part: this year the class will be available not just to OU students but also — for free, thanks to funding from USGS and NASA — to natural resource managers, tribal environmental professionals, and anyone else who is interested in the science and impacts of climate change, because almost everything will take place online, on OU’s interactive learning platform Janux. Professionally produced videos will feature experts from across the south-central U.S., and participants will conduct readings and discussions on the online course page. All participants will be evaluated through online quizzes, while university students enrolled for credit will also produce individual term papers and — similar to the class last fall — a group project culminating in a mock negotiation of the United Nations Framework Convention on Climate Change. ![]() To produce the class videos, the SCCSC teamed up with Next Thought, a company that specializes in online education and produces all of OU's online classes. On the course website, videos and other online content will be released successively as the semester progresses instead of all at once. That way class and online participants can engage in discussions about the same course material. The class is open to enroll at janux.ou.edu. I will participate as one of the online students. I’m excited about this class, because it will bridge the gap between different fields: science, management, and policy-making. If you plan to enroll in the class and what to share your experience in a guest blog post during or after the semester, please let us know via email at info@eccforum.org or through Facebook or Twitter.
Development of this course was funded by the USGS through the South Central Climate Science Center on Grant #G15AP00136, NASA through the Oklahoma Space Grant Consortium on Grant #NNX11AB54H, and the University of Oklahoma College of Atmospheric and Geographic Sciences. The contents of this course are solely the responsibility of the authors and do not necessarily represent the views of the funding agencies. This post was originally written for the Early Career Climate Forum and posted in May 2016.
I recently finished an online survey of agricultural advisors in Texas, Oklahoma, Kansas, and Colorado about seasonal forecasting for winter wheat farmers. Online surveys are everywhere these days, and with free tools like SurveyMonkey or Google Forms, anyone can conduct a survey. Preparing and conducting a survey for research, however, is no small endeavor and requires careful consideration. My survey, for example, took 3 months to plan and another 3 to conduct. Here are 6 tips on how to get the most out of your efforts. 1. Survey or something else? Ask yourself: What information am I interested in, and is a survey the best method to get that information? Surveys work well with quantitative information that can be ranked, listed, counted, or compared on like-dislike scales. But surveys are not good for qualitative research, like descriptions of events, detailed anecdotes, or open-ended conversations. For this kind of information, personal interviews are a better tool. Analyzing interviews – conducting, recording, transcribing, and analyzing text – is also much more labor-intensive–one reason why interview studies generally have fewer participants than survey-based studies. The pros and cons of qualitative approaches are nicely laid out in Berg (2008, full references at the end of this post), a seminal book on qualitative methods. Babbie (2014) provides the basics about survey research (chapter 9) and quantitative analysis (chapter 14). Also, discuss your approach with faculty, experienced coworkers, and your committee. I decided that a survey followed by a small number of interviews would give me the best of both worlds – a large, quantitative dataset to analyze and detailed information to explain some of the most interesting survey results, all while being time-efficient. 2. Survey methods You’ve established that a survey is your method of choice. But which survey method should you choose? Many surveys today are conducted online as opposed to via phone or snail mail, and for obvious reasons: Online surveys are easy to disseminate – via email or social media – and they are cheap or free to produce (try Google Forms or SurveyMonkey). Online surveys also deliver instant results in a digital format, reducing errors from digitizing mail responses. They also have lower labor costs than phone surveys while having higher response rates: about 25% for online surveys versus 8 to 12% for phone surveys, according to FluidSurveys. Online surveys, as convenient as they are, can create biases. Your target population might not all have internet and/or social media access, or you might not have a complete email list. These biases could lower the explanatory power and generalizability of the survey results. Biases can’t always be avoided, or avoiding them could increase costs. In any case, these limitations should at least be mentioned in the publication. My survey, too, faced the problem of internet bias, but instead of changing my method I decided to change the survey population. Instead of surveying farmers, a group that doesn't use computer and internet much, I surveyed corporate extension agents, agricultural advisors with desk jobs, internet access, and publicly available email addresses. They are also in contact with many farmers in their county, and thus can, to a good degree, speak for them. I couldn’t ask them quite the same questions that I would have asked farmers, but that was a compromise I was willing to make. 3. Survey Design Ask yourself again: What am I interested in? This should help you decide what question formats are best: matrices, multiple choice, open-ended text boxes, Likert scales, images and sketches …? Text books can give you some direction, but think critically about what you read in papers. Was that really the best way to answer the research question in that particular case, or was it just convenient? Could I do it differently and get better, more robust results? Discuss your ideas with your committee or peer researchers. My survey was modeled after focus group and interview research of corn farmers in the Midwestern U.S., which I adapted to fit my time budget and to answer my research questions. Surveying also means explaining differences in responses and, often, trying to confirm or reject a hypothesis. Why did some participants answer in this or that way? Because of their income, their level of education, their geographic location — whatever it is, make sure you ask about it in your survey in order to later cross-tabulate answers and analyze them for significant differences. Also, think about the order of your questions and if you really need to ask all of them. People might be okay spending 10 or 15 minutes on your survey, but too many questions will make them frustrated and tired. Keep it succinct, but still ask everything you need. Let people know at the beginning how long the survey will take (pretests can help you estimate that) and include a progress bar if you can. 4. Question Language By now you probably see that developing a survey takes some time. After weighing the pros and cons of the question format, phrasing, testing, and refining your questions can take weeks or even months. Which words should you avoid? The farming community in the Southern Great Plains, for example, don’t like terms like “sustainability” (which many associate with more government regulations) or “climate change”, for obvious reasons, so I tried to avoid them. Jargon is okay to use, but make sure people understand what you mean. Consult experts to fine-tune the wording. Make sure questions are unambiguous, easy to understand, and check that answer choices cover every possibility. Again, pretesting can reveal most of these issues before you release your survey. The easier you make it for your participants, the more likely they will finish your survey. 5. IRB Approval Getting your survey approved by your Institutional Review Board (IRB, also called Independent Ethics Committee, IEC) is required for all research on human subjects (meaning survey, medical, psychological, and other research on humans) that is intended for publication. You can read more about the IRB here, but in general, the IRB’s job is to make sure you treat your participants fairly, protect their information, and don’t harm the reputation of your university. The University of Oklahoma produced a series of short videos to explain the IRB approval process. Expedited IRB approval for low-risk studies, like in my case with the agricultural advisors, can take be dealt with in one week. If your survey population includes children, prisoners, or pregnant women (so-called “vulnerable populations”), a full panel review is necessary, which can take months, and reviewers might ask you to explain and justify just about every detail in your survey. Some studies need approval by multiple IRBs, for example studies of Native American tribes, which may have their own IRB process. Last but not least, make sure your survey is finalized when submitted for IRB approval. Even small changes, for example in the wording of questions, have to get approved again. 6. Distributing your online survey Congrats! Your survey got IRB-approved and is ready to go. Now to getting your survey out there. Depending on your target population, this can be a challenge for several reasons. For my survey of agricultural advisors, for example, I couldn’t spread it via Facebook or Twitter. I wouldn’t know who took the survey, nor would it be the best way to access my target population. My results would become meaningless. In my case, personal email and email lists were the only method that made sense. There are several ways to increase the number of responses. Connect with your survey population by attending their meetings and introducing yourself. Reach out to trade publications and ask if they would report about your research and the survey you are conducting in their circulation area. When they do, you can link them in your survey invitation. My research was reported by the Kansas Farm Bureau and the Texas Farm Bureau, which I mentioned in survey reminder emails. Especially for out-of-state surveys, this can create trust among the people who are otherwise unfamiliar with you. “Local champions,” people well known and respected by your target group, can also help you boost your response rate. I asked state and regional extension directors to send out invites and reminders on my behalf. Their name in people’s inbox (as opposed to my) most likely made people more likely to take time out of their busy schedule and take my survey. One time I sent out reminders myself. I got zero responses. But local champions are busy people, too. Provide them with email templates, a list of email addresses (semicolon-separated, so they can be copy-pasted into an email address field), and a PDF with information about your research they can attach. Also, ask them to copy you in their email. That way you know the email was actually sent out and when. Collaborating with local champions will be additional work for you, but it is worth the effort. Without them I would not have gotten the response rate that I got. After three months of surveying and several rounds of emails, it was at just over 40%. And as a nice side effect, I had several people say they were very interested in presenting my results. Lastly, timing is critical. Think about times when people are easier to get a hold of. Winter wheat advisors have a lower workload during in the cold months of the year, before temperatures increase in spring and farm work picks up again, which leaves more time for them to do my survey around winter and early spring. Related Material: Babbie, E. R. (2014). The Basics of Social Research (Vol. 6). (especially chapters 9 and 14) Berg, B. (1998). Qualitative Research Methods for the Social Sciences. Third Edition. Edit (August 2017): Pew Research published a comprehensive guide to designing public opinion surveys: http://www.pewresearch.org/methodology/u-s-survey-research/questionnaire-design/ ![]() This post was originally written for the Early Career Climate Forum and posted in February 2016. Climate negotiations, like last December in Paris, are complex, complicated, and not always fruitful. Last year, an innovative class for undergraduates at the University of Oklahoma gave students hands-on experience of how climate policy is made. This fall the class will go online for everyone around the world to participate. Here is my interview with the instructor and students of this class to summarize their experience with context to the recent Conference of the Parties (COP21) negotiations. Last December, 195 countries came together at the climate negotiations in Paris to shape a policy agreement on greenhouse gas emissions reduction to keep the global temperature rise below 2ºC. Now imagine this: young men and women armed with laptop and paper full of notes and scribbles, arguing about renewable energies, emission reductions, and carbon taxes across tables with signs that say “Egypt”, “Australia”, “China”, or “Tuvalu”. What sounds like one of the sessions in Paris was actually a classroom setting, the highlight of an undergraduate geography class at the University of Oklahoma (OU) called “Managing for a Changing Climate”. The class, co-taught by staff and researchers of the South Central Climate Science Center (SC CSC) and faculty at OU, featured an interdisciplinary mix of human and physical geography, climate science, climate policy, and economics. Dr. Renee McPherson (one of the instructors of the course) explained that one of the goals of the class was to get the undergraduates more familiar with how climate policy is made, and why sometimes there is an agreement, like last December in Paris, and why sometimes there isn’t, like in 2014 in Lima (where last year’s climate conference was held). McPherson is the University co-director of the SC CSC and an Associate Professor in Geography at OU. She attended both the Paris conference last year and its predecessor in Lima (2014) as an observer. “Policy isn’t this quantitative process, that if you go through step one, step two, step three, you’re always going to get an agreement at the end.” ![]() Leading up to its own (mock) conference, the class focused on hands-on experience in climate policy, but also featured traditional lectures on economics and climate science. In addition to lectures, students were assigned into teams to represent one of ten countries. Students researched the culture and background of their country to determine which one of the three prescribed policies – renewables, lower emissions, or carbon taxes – to advocate for and defend in a mock climate conference at the end of the semester. “The science has gotten better over the years, and more and more policy leaders are convinced by the science,” says McPherson. Indeed, last year’s negotiations were not so much about whether the climate science was real but what to do about global warming, how to work the problem, said Reid Detchon, Vice President for Energy and Climate Strategy at the United Nations Foundation, in a recent Climate Voices webinar. ![]() For Cameron Conyers, a junior majoring in Environmental Sustainability, the mock negotiations made it a “top-notch class”. Teams didn’t just establish their own position, but also considered everyone else’s strategy in order to form stronger alliances. “No one wanted to be the loser”, he remembers. “We looked at targets of each of the other countries, met with their representatives, even outside of class, and hashed out side agreements to pull them onto our side.” At the end of tough negotiations, 9 out of the 10 countries voted for investing in renewable energies, and one voted for carbon taxes. ![]() Back to the real world of policy-making, the class finished with a review of the conference in Paris by two of the instructors. Dr. Berrien Moore, Professor in Meteorology and also Dean of the College of Atmospheric and Geographic Sciences at OU, gave a summary of the progress. Dr. McPherson joined via Skype live from the Conference of the Parties (COP21) negotiations to give a feel for the vibe at the meeting, which was overshadowed by the terrorist attacks that had France still in shock. “Any time that a delegate from a different nation came up and spoke, they always prefaced it by some comment [about the terror attacks], like their heartfelt feelings for the people of Paris and the nation of France,” McPherson remembers. In her opinion, the Paris attacks played an important role in the success of the conference. “There was almost a sense that a lot of the nations wanted Paris to have an opportunity to, you know, rise on the pedestal.” ![]() “Managing for a Changing Climate” will be offered again as a Massive Open Online Course (MOOC) this coming fall semester at the University of Oklahoma. To receive college credit, students need to be enrolled as OU students, but anyone with internet access who is interested can participate for free (though without getting credit). Follow janux.ou.edu and the South Central Climate Science Center on Facebook and Twitter for updates. The class instructors presented this course at the 2016 annual meeting of the American Meteorological Society. Download their poster here. The course was made possibly by the generosity and collaborative spirit of the OU College of Atmospheric and Geographic Sciences, the Oklahoma Space Grant Consortium (supported by NASA), and the South Central Climate Science Center (supported by the USGS). ![]() This post was originally written for the Early Career Climate Forum and posted in November 2015. Three weeks ago I passed my general exams (aka comprehensive exams or preliminary exams). It’s something Ph.D. students must go through before advancing to becoming a Ph.D. candidate. It's a test of their knowledge, but passing requires more than just knowing stuff. In my department at The University of Oklahoma, general exams are the transition point from classwork to doing research. The exam committee tests whether the candidate knows the state of the science in all areas related to their research, and it’s for the student to prove they are ready to conduct independent research. Like most generals, mine were divided into a written and an oral portion, although the particulars can vary depending on committee, discipline, and university. My generals consisted of five essay exams on five consecutive days. Each day, I had to answer three to six questions from each of my five committee members within 8 to 12 hours, followed by one, 2-hour session of follow-up Q&A and discussion with all of my committee members at once. ![]() The key to making it through the generals is planning, persistence, and strong nerves – and a chunk of good luck. About 6 months ago, in early May, I presented my preliminary research idea to my committee and met with each member to sketch out topics to study for, things they thought would be good for me to know given my research focus. This gave me focus areas and goals to study for, which otherwise would have been hard given that my dissertation spans the fields of social sciences, meteorology, and agriculture. So, how did it go? The short answer is, it was a nightmare and mental torture beyond anything I had ever experienced before. But I passed, so I probably shouldn’t complain too much. But the task I faced each day of the exam was massive, and 8 (or 12) hours were over before I knew it. So good organization was key. Thankfully, my exam was “open book” (as opposed to closed book), so I could use all my handwritten notes from six months of studying along with other sources. However, handwritten notes were probably not the smartest choice, since text files are more easily searchable for keywords and topics. Luckily though, I use referencing software like EndNote, BibTex, or ProCite, to manage hundreds of journal papers, reports, book chapters, websites, and personal communication; each with entries containing abstracts, notes, cross-references, URLs, and of course the publication as a PDF file, catalogued in virtual folders and tagged with meaningful keywords. For a question about climate predictability or forecast skill assessments I had a folder of references. For a question on the economic value of seasonal climate forecasts, I had a folder for that too. ![]() The written portion of my exam was a rollercoaster ride of joy and despair. I felt confident giving a good answer and even enjoyed some of the questions. But I was under massive time constrains, and at the end of every day, my brain was exhausted from the brutal workout and capable of handling no more than making dinner and preparing lunch for the next day. I might have looked calm, but inside I was under immense stress. But then I should be. Generals are to test what you’re capable of. You’re a rookie in a boxing match taking on five professionals at the same time. Your goal shouldn’t be to win or to impress anyone, but to not get knocked out. Knowing that, I’m sure no one on my committee expected me to ace the generals, and realizing that helped me keep my expectations realistic and stay positive. By the way, I tried to not see my committee as this group of people set out to give me an unnecessary hard time, but as a team of experts giving their time helping me to succeed with my research idea, advancing science – and, oh, maybe getting a job later on. If, somehow, the written part of the exams doesn’t stress you out enough, the oral part sure will. My committee was given one week to go over my written answers before the oral test. This meant I too, had one week to go over my five essays, to find weak spots, parts I explained poorly or was too vague on, or didn’t reference well. All of this was to try and anticipate what my committee would hone in on with more detailed questions. I identified plenty of weak spots, and quickly realized that whatever I did, I still had huge knowledge gaps, despite the five months of studying before the exams. From plant physiology and climate predictability factors, to map projections and the role of place in communicating and mediating information, to comparing single climate models and model ensembles. It’s easy to send someone out on thin ice with just one discipline, let alone multiple. I’m usually comfortable with public speaking, but during the oral exam I was so nervous that I could barely phrase a full sentence, or even remember the question. To my advantage, all questions were follow-ups from my written exam, so at least I didn’t fall over any new tripwires. Still, I was struggling not to stress out. After some 90 minutes of mental drudgery, I was asked to wait outside for my committee to discuss the final result. A colleague had warned me that no matter how much I know, there will come a point at which I won’t know the answers anymore; admitting this isn’t failure, but more or less part of the process. Still, as I sat there waiting I felt awful, and I honestly didn’t expect them to let me pass. It was impossible to gauge whether my answers had been good enough. I reflected - in a search for words (and self-confidence) I had asked each committee member to repeat almost every question. Most of my answers had been stammered syllables, not sentences. While I waited outside I mentally prepared (or hoped?) for a final question that I could answer really well. Seven or eight minutes later –– sooner than I expected –– the door opened I was asked back in. I expected a long explanation for their decision, followed by a final, deciding question, and the verdict. Something else happened. Before I fully scanned the room, my advisor stretched her arm out and congratulated me. The rest of my committee applauded! I was so baffled I actually asked her if this meant I passed. It did. I did great, she told me. No one ever thinks their orals go well. It took me a few days to appreciate and fully realize what had just happened. There was no sudden relief, exhaling, falling back into an armchair and enjoying the rest of the week. I had to finalize my research proposal, continue developing a survey, and start preparing for upcoming conferences. One job done, on to the next one – I feel like this will be the new normal from now on. But I successfully completed a huge career hurdle and that sure is something. ![]() This post was originally written for the Early Career Climate Forum and posted in September 2015. Before doctoral students can embark on their research journey they have to pass a general exam, a one-week torture chamber to prove they know all about the methods and fields of science they will touch upon in their upcoming research. My research at the South Central Climate Science Center covers agriculture, climate modeling, statistics, GIS, and social science, so there’s lots to learn, and some of these fields don’t overlap a lot in their methods or language, to say the least. I’m developing tailored seasonal climate forecasts for agricultural producers in Oklahoma. Interdisciplinary research can be messy, stressful, confusing, and very time-consuming—maybe one reason why it is not for everyone. I find it fascinating, though, for exactly these reasons. Conducting, facilitating and funding interdisciplinary research with scientists and stakeholders is one of the main purposes of the Climate Science Centers. One challenge with applied, interdisciplinary problems is actually solving them, providing solutions that people are happy with. Solving these sorts of problems involves getting diverse stakeholders to sit together at a table and understand each other’s perspectives, work together, learn from each other, and come out with practical solutions. This isn’t easy, as witnessed by the challenges involved in matching stakeholders’ needs with the sorts of products and insight researchers can provide, like the seasonal climate forecasts issued by the Climate Prediction Center (CPC). Many farmers and ranchers say these forecasts are unreliable, difficult to read, and don’t give them the information they need to make important decisions. They were developed in what some researchers call the “loading-dock approach”: putting information out on the loading dock, walking back inside, and waiting for people to pick it up and use it. How do we improve on the loading-dock approach? One alternative is what social scientists call adaptive co-management, a combination of two techniques many people are already familiar with: co-management and adaptive management. Co-management describes the collaboration of different stakeholders whereas adaptive management describes flexible, adaptable procedures that incorporate feedback and can change over time through so-called dual-loop learning—basically learning by doing. Adaptive co-management, then, is decision-making among multiple stakeholders with trust, respect, and equal influence who acknowledge that any one result or solution is not the be-all and end-all to the problem but may need to change over time. Changes in farm management, new regulations, shifts in commodity prices, or advances in climate research (such as higher resolution climate models) can force all decision-makers to adapt to new conditions. Sounds like a great idea, doesn’t it? Unfortunately, various obstacles can prevent stakeholders from developing solutions, even when they use adaptive co-management strategies. Common stumbling blocks include preconceived attitudes about other stakeholders (often a result of unresolved conflicts from the past), unwillingness to share influence and power, inability to commit financial or human capital, or simply not understanding each others’ culture and language, literally and figuratively. This last one is a problem that often occurs when “western” scientists work with local experts in developing countries. Institutional mechanisms like meetings, translation, collaboration, and mediation can help develop solutions and products that all participants will eventually use, though none of these is a panacea. Despite these obstacles, adaptive co-management strategies are already being successfully applied. The collaboration between the South Central Climate Science Center and the Great Plains Landscape Conservation Cooperative in restoring native grasslands, which Jessica wrote about last week, is one good example. So are NOAA’s Regional Integrated Sciences and Assessment (RISA) teams, such as GLISA around the Great Lakes, SCIPP in the south-central US, or CLIMAS in Arizona, New Mexico, and northwestern Mexico. While the Climate Science Centers are more involved in climate science integration into adaptation and protection of natural and cultural resources, RISA teams work with a range of sectors, including public health, on climate risk management. The USDA Regional Climate Hubs help farmers, ranchers, and forest owners to adapt to climate variability and change. Internationally, the International Research Institute for Climate and Society (IRI), based at New York’s Columbia University, works with stakeholders in developing countries on strategies to transfer climate science into risk assessment and mitigation. Related material: Cash et al. (2006): Countering the Loading-Dock Approach to Linking Science and Decision Making: Comparative Analysis of El Niño/Southern Oscillation (ENSO) Forecasting Systems. Science, Technology & Human Values 31, p. 465-494. Plummer & Armitage (2007): Charting the New Territory of Adaptive Co-management: A Delphi Study. Ecology and Society 12, article 10. |