![]() There is this sketch of a Venn diagram with two non-overlapping circles, one being a person’s comfort zone, and the other one showing “where the magic happens”. A few months ago, my advisor sent me to a conference in Salt Lake City that felt exactly like this Venn diagram. While many of my early career co-workers were at a science communication workshop at Texas Tech University in Lubbock, Texas, I was en route to a joint conference on agricultural and forest meteorology, boundary layer climates, and biogeosciences. The areas might not reflect it as much, but I was way out of my comfort zone. ![]() And that was not the first time it happened. In October of 2013, I was at the 7th Graduate Climate Conference in Woods Hole, Massachusetts, a fun and relaxed student conference and one of the first conferences I ever talked about my own research idea. The only problem was, that entire sessions were dedicated to super-specific issues, like atmospheric dynamics, ocean biology, or aerosols. The three-day conference had one session on humans, climate, and policy, and a handful of posters about applied research (including my own). That was all. What was I doing at this meteorology nerdfest? (Admittedly, New England in the fall is off the charts beautiful, so at least from a photographic standpoint it was totally worth it!) ![]() What I didn’t understand in 2013 I learned this summer. After five days of talks about field campaigns, flux experiments, and instrument calibration, I understood that this work is not just essential in understanding how our atmosphere works or how plants react to global warming. This research can be the foundation of seasonal climate forecasts that researchers like me use to make decision tools for farmers. As an applied, interdisciplinary researcher, I should be outside my comfort zone. My job is not only to understand what users want and how decision tools that researchers like me try to create are used (or not used). I also need to understand the work of modelers, statisticians, agronomists, or anthropologists, to apply their methods, to better judge which climate models or statistical techniques work best for me, to appreciate their work, or simply to speak their language and understand their way of thinking. Afterall, I might be using their work for my research, or even more so be there future collaborator. ![]() This weekend, I am again at the 10th Graduate Climate Conference, this time in Washington state, presenting (again for one of the first times) results from my research. But between log cabins and cedar trees, this feels like a lesson-learned check. I’m still struggling to make sense of concepts, acronyms, and jargon, but not as much as I used to. My comfort zone became a little bigger. And as I’m listening I realize that these brilliant, creative, engaging, fascinating minds not only shape tomorrow’s climate research. They might also be the people I’ll be working with sooner or later. Check out: www.graduateclimateconference.com ![]() This post was originally written for the Early Career Climate Forum and posted in August 2016. Earlier this year, I wrote an ECCF blog about a fall semester undergraduate class at the University of Oklahoma (OU) that taught students about climate science, the impacts of climate change, and that gave them a look behind the scenes of the climate negotiations at the Paris COP21 meeting last December. Well, I’m happy to report that this fall this class is back — and it’s gotten even better. Starting August 17th, the South Central Climate Science Center (SCCSC) will be offering “Managing for a Changing Climate”, an interactive class based on the experiences and feedback from last fall. “Participants will hear from a wide variety of experts from both the research and management worlds”, says Aparna Bamzai, University Assistant Director at the SCCSC and coordinator of the course. They will teach lessons about the components of the climate system, including the range of natural climate variability and external drivers of climate change, in addition to impacts of a changing climate on sectors such as the economy, policy, ecosystems, and indigenous populations. ![]() The best part: this year the class will be available not just to OU students but also — for free, thanks to funding from USGS and NASA — to natural resource managers, tribal environmental professionals, and anyone else who is interested in the science and impacts of climate change, because almost everything will take place online, on OU’s interactive learning platform Janux. Professionally produced videos will feature experts from across the south-central U.S., and participants will conduct readings and discussions on the online course page. All participants will be evaluated through online quizzes, while university students enrolled for credit will also produce individual term papers and — similar to the class last fall — a group project culminating in a mock negotiation of the United Nations Framework Convention on Climate Change. ![]() To produce the class videos, the SCCSC teamed up with Next Thought, a company that specializes in online education and produces all of OU's online classes. On the course website, videos and other online content will be released successively as the semester progresses instead of all at once. That way class and online participants can engage in discussions about the same course material. The class is open to enroll at janux.ou.edu. I will participate as one of the online students. I’m excited about this class, because it will bridge the gap between different fields: science, management, and policy-making. If you plan to enroll in the class and what to share your experience in a guest blog post during or after the semester, please let us know via email at info@eccforum.org or through Facebook or Twitter.
Development of this course was funded by the USGS through the South Central Climate Science Center on Grant #G15AP00136, NASA through the Oklahoma Space Grant Consortium on Grant #NNX11AB54H, and the University of Oklahoma College of Atmospheric and Geographic Sciences. The contents of this course are solely the responsibility of the authors and do not necessarily represent the views of the funding agencies. This post was originally written for the Early Career Climate Forum and posted in May 2016.
I recently finished an online survey of agricultural advisors in Texas, Oklahoma, Kansas, and Colorado about seasonal forecasting for winter wheat farmers. Online surveys are everywhere these days, and with free tools like SurveyMonkey or Google Forms, anyone can conduct a survey. Preparing and conducting a survey for research, however, is no small endeavor and requires careful consideration. My survey, for example, took 3 months to plan and another 3 to conduct. Here are 6 tips on how to get the most out of your efforts. 1. Survey or something else? Ask yourself: What information am I interested in, and is a survey the best method to get that information? Surveys work well with quantitative information that can be ranked, listed, counted, or compared on like-dislike scales. But surveys are not good for qualitative research, like descriptions of events, detailed anecdotes, or open-ended conversations. For this kind of information, personal interviews are a better tool. Analyzing interviews – conducting, recording, transcribing, and analyzing text – is also much more labor-intensive–one reason why interview studies generally have fewer participants than survey-based studies. The pros and cons of qualitative approaches are nicely laid out in Berg (2008, full references at the end of this post), a seminal book on qualitative methods. Babbie (2014) provides the basics about survey research (chapter 9) and quantitative analysis (chapter 14). Also, discuss your approach with faculty, experienced coworkers, and your committee. I decided that a survey followed by a small number of interviews would give me the best of both worlds – a large, quantitative dataset to analyze and detailed information to explain some of the most interesting survey results, all while being time-efficient. 2. Survey methods You’ve established that a survey is your method of choice. But which survey method should you choose? Many surveys today are conducted online as opposed to via phone or snail mail, and for obvious reasons: Online surveys are easy to disseminate – via email or social media – and they are cheap or free to produce (try Google Forms or SurveyMonkey). Online surveys also deliver instant results in a digital format, reducing errors from digitizing mail responses. They also have lower labor costs than phone surveys while having higher response rates: about 25% for online surveys versus 8 to 12% for phone surveys, according to FluidSurveys. Online surveys, as convenient as they are, can create biases. Your target population might not all have internet and/or social media access, or you might not have a complete email list. These biases could lower the explanatory power and generalizability of the survey results. Biases can’t always be avoided, or avoiding them could increase costs. In any case, these limitations should at least be mentioned in the publication. My survey, too, faced the problem of internet bias, but instead of changing my method I decided to change the survey population. Instead of surveying farmers, a group that doesn't use computer and internet much, I surveyed corporate extension agents, agricultural advisors with desk jobs, internet access, and publicly available email addresses. They are also in contact with many farmers in their county, and thus can, to a good degree, speak for them. I couldn’t ask them quite the same questions that I would have asked farmers, but that was a compromise I was willing to make. 3. Survey Design Ask yourself again: What am I interested in? This should help you decide what question formats are best: matrices, multiple choice, open-ended text boxes, Likert scales, images and sketches …? Text books can give you some direction, but think critically about what you read in papers. Was that really the best way to answer the research question in that particular case, or was it just convenient? Could I do it differently and get better, more robust results? Discuss your ideas with your committee or peer researchers. My survey was modeled after focus group and interview research of corn farmers in the Midwestern U.S., which I adapted to fit my time budget and to answer my research questions. Surveying also means explaining differences in responses and, often, trying to confirm or reject a hypothesis. Why did some participants answer in this or that way? Because of their income, their level of education, their geographic location — whatever it is, make sure you ask about it in your survey in order to later cross-tabulate answers and analyze them for significant differences. Also, think about the order of your questions and if you really need to ask all of them. People might be okay spending 10 or 15 minutes on your survey, but too many questions will make them frustrated and tired. Keep it succinct, but still ask everything you need. Let people know at the beginning how long the survey will take (pretests can help you estimate that) and include a progress bar if you can. 4. Question Language By now you probably see that developing a survey takes some time. After weighing the pros and cons of the question format, phrasing, testing, and refining your questions can take weeks or even months. Which words should you avoid? The farming community in the Southern Great Plains, for example, don’t like terms like “sustainability” (which many associate with more government regulations) or “climate change”, for obvious reasons, so I tried to avoid them. Jargon is okay to use, but make sure people understand what you mean. Consult experts to fine-tune the wording. Make sure questions are unambiguous, easy to understand, and check that answer choices cover every possibility. Again, pretesting can reveal most of these issues before you release your survey. The easier you make it for your participants, the more likely they will finish your survey. 5. IRB Approval Getting your survey approved by your Institutional Review Board (IRB, also called Independent Ethics Committee, IEC) is required for all research on human subjects (meaning survey, medical, psychological, and other research on humans) that is intended for publication. You can read more about the IRB here, but in general, the IRB’s job is to make sure you treat your participants fairly, protect their information, and don’t harm the reputation of your university. The University of Oklahoma produced a series of short videos to explain the IRB approval process. Expedited IRB approval for low-risk studies, like in my case with the agricultural advisors, can take be dealt with in one week. If your survey population includes children, prisoners, or pregnant women (so-called “vulnerable populations”), a full panel review is necessary, which can take months, and reviewers might ask you to explain and justify just about every detail in your survey. Some studies need approval by multiple IRBs, for example studies of Native American tribes, which may have their own IRB process. Last but not least, make sure your survey is finalized when submitted for IRB approval. Even small changes, for example in the wording of questions, have to get approved again. 6. Distributing your online survey Congrats! Your survey got IRB-approved and is ready to go. Now to getting your survey out there. Depending on your target population, this can be a challenge for several reasons. For my survey of agricultural advisors, for example, I couldn’t spread it via Facebook or Twitter. I wouldn’t know who took the survey, nor would it be the best way to access my target population. My results would become meaningless. In my case, personal email and email lists were the only method that made sense. There are several ways to increase the number of responses. Connect with your survey population by attending their meetings and introducing yourself. Reach out to trade publications and ask if they would report about your research and the survey you are conducting in their circulation area. When they do, you can link them in your survey invitation. My research was reported by the Kansas Farm Bureau and the Texas Farm Bureau, which I mentioned in survey reminder emails. Especially for out-of-state surveys, this can create trust among the people who are otherwise unfamiliar with you. “Local champions,” people well known and respected by your target group, can also help you boost your response rate. I asked state and regional extension directors to send out invites and reminders on my behalf. Their name in people’s inbox (as opposed to my) most likely made people more likely to take time out of their busy schedule and take my survey. One time I sent out reminders myself. I got zero responses. But local champions are busy people, too. Provide them with email templates, a list of email addresses (semicolon-separated, so they can be copy-pasted into an email address field), and a PDF with information about your research they can attach. Also, ask them to copy you in their email. That way you know the email was actually sent out and when. Collaborating with local champions will be additional work for you, but it is worth the effort. Without them I would not have gotten the response rate that I got. After three months of surveying and several rounds of emails, it was at just over 40%. And as a nice side effect, I had several people say they were very interested in presenting my results. Lastly, timing is critical. Think about times when people are easier to get a hold of. Winter wheat advisors have a lower workload during in the cold months of the year, before temperatures increase in spring and farm work picks up again, which leaves more time for them to do my survey around winter and early spring. Related Material: Babbie, E. R. (2014). The Basics of Social Research (Vol. 6). (especially chapters 9 and 14) Berg, B. (1998). Qualitative Research Methods for the Social Sciences. Third Edition. Edit (August 2017): Pew Research published a comprehensive guide to designing public opinion surveys: http://www.pewresearch.org/methodology/u-s-survey-research/questionnaire-design/ ![]() This post was originally written for the Early Career Climate Forum and posted in February 2016. Climate negotiations, like last December in Paris, are complex, complicated, and not always fruitful. Last year, an innovative class for undergraduates at the University of Oklahoma gave students hands-on experience of how climate policy is made. This fall the class will go online for everyone around the world to participate. Here is my interview with the instructor and students of this class to summarize their experience with context to the recent Conference of the Parties (COP21) negotiations. Last December, 195 countries came together at the climate negotiations in Paris to shape a policy agreement on greenhouse gas emissions reduction to keep the global temperature rise below 2ºC. Now imagine this: young men and women armed with laptop and paper full of notes and scribbles, arguing about renewable energies, emission reductions, and carbon taxes across tables with signs that say “Egypt”, “Australia”, “China”, or “Tuvalu”. What sounds like one of the sessions in Paris was actually a classroom setting, the highlight of an undergraduate geography class at the University of Oklahoma (OU) called “Managing for a Changing Climate”. The class, co-taught by staff and researchers of the South Central Climate Science Center (SC CSC) and faculty at OU, featured an interdisciplinary mix of human and physical geography, climate science, climate policy, and economics. Dr. Renee McPherson (one of the instructors of the course) explained that one of the goals of the class was to get the undergraduates more familiar with how climate policy is made, and why sometimes there is an agreement, like last December in Paris, and why sometimes there isn’t, like in 2014 in Lima (where last year’s climate conference was held). McPherson is the University co-director of the SC CSC and an Associate Professor in Geography at OU. She attended both the Paris conference last year and its predecessor in Lima (2014) as an observer. “Policy isn’t this quantitative process, that if you go through step one, step two, step three, you’re always going to get an agreement at the end.” ![]() Leading up to its own (mock) conference, the class focused on hands-on experience in climate policy, but also featured traditional lectures on economics and climate science. In addition to lectures, students were assigned into teams to represent one of ten countries. Students researched the culture and background of their country to determine which one of the three prescribed policies – renewables, lower emissions, or carbon taxes – to advocate for and defend in a mock climate conference at the end of the semester. “The science has gotten better over the years, and more and more policy leaders are convinced by the science,” says McPherson. Indeed, last year’s negotiations were not so much about whether the climate science was real but what to do about global warming, how to work the problem, said Reid Detchon, Vice President for Energy and Climate Strategy at the United Nations Foundation, in a recent Climate Voices webinar. ![]() For Cameron Conyers, a junior majoring in Environmental Sustainability, the mock negotiations made it a “top-notch class”. Teams didn’t just establish their own position, but also considered everyone else’s strategy in order to form stronger alliances. “No one wanted to be the loser”, he remembers. “We looked at targets of each of the other countries, met with their representatives, even outside of class, and hashed out side agreements to pull them onto our side.” At the end of tough negotiations, 9 out of the 10 countries voted for investing in renewable energies, and one voted for carbon taxes. ![]() Back to the real world of policy-making, the class finished with a review of the conference in Paris by two of the instructors. Dr. Berrien Moore, Professor in Meteorology and also Dean of the College of Atmospheric and Geographic Sciences at OU, gave a summary of the progress. Dr. McPherson joined via Skype live from the Conference of the Parties (COP21) negotiations to give a feel for the vibe at the meeting, which was overshadowed by the terrorist attacks that had France still in shock. “Any time that a delegate from a different nation came up and spoke, they always prefaced it by some comment [about the terror attacks], like their heartfelt feelings for the people of Paris and the nation of France,” McPherson remembers. In her opinion, the Paris attacks played an important role in the success of the conference. “There was almost a sense that a lot of the nations wanted Paris to have an opportunity to, you know, rise on the pedestal.” ![]() “Managing for a Changing Climate” will be offered again as a Massive Open Online Course (MOOC) this coming fall semester at the University of Oklahoma. To receive college credit, students need to be enrolled as OU students, but anyone with internet access who is interested can participate for free (though without getting credit). Follow janux.ou.edu and the South Central Climate Science Center on Facebook and Twitter for updates. The class instructors presented this course at the 2016 annual meeting of the American Meteorological Society. Download their poster here. The course was made possibly by the generosity and collaborative spirit of the OU College of Atmospheric and Geographic Sciences, the Oklahoma Space Grant Consortium (supported by NASA), and the South Central Climate Science Center (supported by the USGS). ![]() This post was originally written for the Early Career Climate Forum and posted in November 2015. Three weeks ago I passed my general exams (aka comprehensive exams or preliminary exams). It’s something Ph.D. students must go through before advancing to becoming a Ph.D. candidate. It's a test of their knowledge, but passing requires more than just knowing stuff. In my department at The University of Oklahoma, general exams are the transition point from classwork to doing research. The exam committee tests whether the candidate knows the state of the science in all areas related to their research, and it’s for the student to prove they are ready to conduct independent research. Like most generals, mine were divided into a written and an oral portion, although the particulars can vary depending on committee, discipline, and university. My generals consisted of five essay exams on five consecutive days. Each day, I had to answer three to six questions from each of my five committee members within 8 to 12 hours, followed by one, 2-hour session of follow-up Q&A and discussion with all of my committee members at once. ![]() The key to making it through the generals is planning, persistence, and strong nerves – and a chunk of good luck. About 6 months ago, in early May, I presented my preliminary research idea to my committee and met with each member to sketch out topics to study for, things they thought would be good for me to know given my research focus. This gave me focus areas and goals to study for, which otherwise would have been hard given that my dissertation spans the fields of social sciences, meteorology, and agriculture. So, how did it go? The short answer is, it was a nightmare and mental torture beyond anything I had ever experienced before. But I passed, so I probably shouldn’t complain too much. But the task I faced each day of the exam was massive, and 8 (or 12) hours were over before I knew it. So good organization was key. Thankfully, my exam was “open book” (as opposed to closed book), so I could use all my handwritten notes from six months of studying along with other sources. However, handwritten notes were probably not the smartest choice, since text files are more easily searchable for keywords and topics. Luckily though, I use referencing software like EndNote, BibTex, or ProCite, to manage hundreds of journal papers, reports, book chapters, websites, and personal communication; each with entries containing abstracts, notes, cross-references, URLs, and of course the publication as a PDF file, catalogued in virtual folders and tagged with meaningful keywords. For a question about climate predictability or forecast skill assessments I had a folder of references. For a question on the economic value of seasonal climate forecasts, I had a folder for that too. ![]() The written portion of my exam was a rollercoaster ride of joy and despair. I felt confident giving a good answer and even enjoyed some of the questions. But I was under massive time constrains, and at the end of every day, my brain was exhausted from the brutal workout and capable of handling no more than making dinner and preparing lunch for the next day. I might have looked calm, but inside I was under immense stress. But then I should be. Generals are to test what you’re capable of. You’re a rookie in a boxing match taking on five professionals at the same time. Your goal shouldn’t be to win or to impress anyone, but to not get knocked out. Knowing that, I’m sure no one on my committee expected me to ace the generals, and realizing that helped me keep my expectations realistic and stay positive. By the way, I tried to not see my committee as this group of people set out to give me an unnecessary hard time, but as a team of experts giving their time helping me to succeed with my research idea, advancing science – and, oh, maybe getting a job later on. If, somehow, the written part of the exams doesn’t stress you out enough, the oral part sure will. My committee was given one week to go over my written answers before the oral test. This meant I too, had one week to go over my five essays, to find weak spots, parts I explained poorly or was too vague on, or didn’t reference well. All of this was to try and anticipate what my committee would hone in on with more detailed questions. I identified plenty of weak spots, and quickly realized that whatever I did, I still had huge knowledge gaps, despite the five months of studying before the exams. From plant physiology and climate predictability factors, to map projections and the role of place in communicating and mediating information, to comparing single climate models and model ensembles. It’s easy to send someone out on thin ice with just one discipline, let alone multiple. I’m usually comfortable with public speaking, but during the oral exam I was so nervous that I could barely phrase a full sentence, or even remember the question. To my advantage, all questions were follow-ups from my written exam, so at least I didn’t fall over any new tripwires. Still, I was struggling not to stress out. After some 90 minutes of mental drudgery, I was asked to wait outside for my committee to discuss the final result. A colleague had warned me that no matter how much I know, there will come a point at which I won’t know the answers anymore; admitting this isn’t failure, but more or less part of the process. Still, as I sat there waiting I felt awful, and I honestly didn’t expect them to let me pass. It was impossible to gauge whether my answers had been good enough. I reflected - in a search for words (and self-confidence) I had asked each committee member to repeat almost every question. Most of my answers had been stammered syllables, not sentences. While I waited outside I mentally prepared (or hoped?) for a final question that I could answer really well. Seven or eight minutes later –– sooner than I expected –– the door opened I was asked back in. I expected a long explanation for their decision, followed by a final, deciding question, and the verdict. Something else happened. Before I fully scanned the room, my advisor stretched her arm out and congratulated me. The rest of my committee applauded! I was so baffled I actually asked her if this meant I passed. It did. I did great, she told me. No one ever thinks their orals go well. It took me a few days to appreciate and fully realize what had just happened. There was no sudden relief, exhaling, falling back into an armchair and enjoying the rest of the week. I had to finalize my research proposal, continue developing a survey, and start preparing for upcoming conferences. One job done, on to the next one – I feel like this will be the new normal from now on. But I successfully completed a huge career hurdle and that sure is something. ![]() This post was originally written for the Early Career Climate Forum and posted in September 2015. Before doctoral students can embark on their research journey they have to pass a general exam, a one-week torture chamber to prove they know all about the methods and fields of science they will touch upon in their upcoming research. My research at the South Central Climate Science Center covers agriculture, climate modeling, statistics, GIS, and social science, so there’s lots to learn, and some of these fields don’t overlap a lot in their methods or language, to say the least. I’m developing tailored seasonal climate forecasts for agricultural producers in Oklahoma. Interdisciplinary research can be messy, stressful, confusing, and very time-consuming—maybe one reason why it is not for everyone. I find it fascinating, though, for exactly these reasons. Conducting, facilitating and funding interdisciplinary research with scientists and stakeholders is one of the main purposes of the Climate Science Centers. One challenge with applied, interdisciplinary problems is actually solving them, providing solutions that people are happy with. Solving these sorts of problems involves getting diverse stakeholders to sit together at a table and understand each other’s perspectives, work together, learn from each other, and come out with practical solutions. This isn’t easy, as witnessed by the challenges involved in matching stakeholders’ needs with the sorts of products and insight researchers can provide, like the seasonal climate forecasts issued by the Climate Prediction Center (CPC). Many farmers and ranchers say these forecasts are unreliable, difficult to read, and don’t give them the information they need to make important decisions. They were developed in what some researchers call the “loading-dock approach”: putting information out on the loading dock, walking back inside, and waiting for people to pick it up and use it. How do we improve on the loading-dock approach? One alternative is what social scientists call adaptive co-management, a combination of two techniques many people are already familiar with: co-management and adaptive management. Co-management describes the collaboration of different stakeholders whereas adaptive management describes flexible, adaptable procedures that incorporate feedback and can change over time through so-called dual-loop learning—basically learning by doing. Adaptive co-management, then, is decision-making among multiple stakeholders with trust, respect, and equal influence who acknowledge that any one result or solution is not the be-all and end-all to the problem but may need to change over time. Changes in farm management, new regulations, shifts in commodity prices, or advances in climate research (such as higher resolution climate models) can force all decision-makers to adapt to new conditions. Sounds like a great idea, doesn’t it? Unfortunately, various obstacles can prevent stakeholders from developing solutions, even when they use adaptive co-management strategies. Common stumbling blocks include preconceived attitudes about other stakeholders (often a result of unresolved conflicts from the past), unwillingness to share influence and power, inability to commit financial or human capital, or simply not understanding each others’ culture and language, literally and figuratively. This last one is a problem that often occurs when “western” scientists work with local experts in developing countries. Institutional mechanisms like meetings, translation, collaboration, and mediation can help develop solutions and products that all participants will eventually use, though none of these is a panacea. Despite these obstacles, adaptive co-management strategies are already being successfully applied. The collaboration between the South Central Climate Science Center and the Great Plains Landscape Conservation Cooperative in restoring native grasslands, which Jessica wrote about last week, is one good example. So are NOAA’s Regional Integrated Sciences and Assessment (RISA) teams, such as GLISA around the Great Lakes, SCIPP in the south-central US, or CLIMAS in Arizona, New Mexico, and northwestern Mexico. While the Climate Science Centers are more involved in climate science integration into adaptation and protection of natural and cultural resources, RISA teams work with a range of sectors, including public health, on climate risk management. The USDA Regional Climate Hubs help farmers, ranchers, and forest owners to adapt to climate variability and change. Internationally, the International Research Institute for Climate and Society (IRI), based at New York’s Columbia University, works with stakeholders in developing countries on strategies to transfer climate science into risk assessment and mitigation. Related material: Cash et al. (2006): Countering the Loading-Dock Approach to Linking Science and Decision Making: Comparative Analysis of El Niño/Southern Oscillation (ENSO) Forecasting Systems. Science, Technology & Human Values 31, p. 465-494. Plummer & Armitage (2007): Charting the New Territory of Adaptive Co-management: A Delphi Study. Ecology and Society 12, article 10. ![]() This post was originally written for the Early Career Climate Forum and posted in August 2015. Wildlife habitats and wildlife migration are big issues when it comes to effects of climate change. While the planet continues to warm - 2014 was the warmest year on record according to NOAA – warm seasons become longer and cold seasons become shorter in many parts of the US. This allows some species to expand their geographic ranges while other species may experience unsuitable climatic conditions or have to cope with new predators and competitors for food. New research at New Mexico State University (NMSU) highlights how climate change affects ecosystems and species migration in the region, information that can be used to inform decision-making on the state level. Virginia Seamster finished her Ph.D. in Environmental Sciences in 2010 at the University of Virginia. During her post-doc at NMSU she was part of a team of 6 researchers studying 20 terrestrial vertebrate species, which include mammals, birds, reptiles, and amphibians, in Texas, New Mexico, and Oklahoma. "Average annual temperatures are projected to increase across New Mexico and the rest of the south central region that we're focusing on for this project," Seamster says. The team used climate projections for the years 2050 and 2070 from models that were also used in the latest IPCC report. These projections were used as inputs for so-called species niche models, which can estimate a species’ range based on known occurrences of the species. In a reverse engineering kind of approach this allows the researchers to estimate how the distribution of suitable climatic conditions for certain species may change as the regional climate changes. Virginia Seamster’s post-doc research was funded by the South Central Climate Science Center. The center is one of eight climate science centers (CSC) in the US and conducts applied research in the south-central US with the goal of supporting climate-related decision making in the region. The CSCs conduct a lot of outreach and education in their respective regions, but also fund and conduct scientific research. "This type of project could influence future revisions to New Mexico's State Wildlife Action Plan and work being done by wildlife managers in the state, including biologists at the New Mexico Department of Game and Fish,” Seamster explains. "The study is designed to provide information to land managers and decision makers to assist in their respective efforts," says Ken Boykin, ecologist at NMSU and lead investigator of the project. Virginia Seamster has recently transitioned from her wildlife-related post-doc position to a job at the New Mexico Department of Game and Fish. There she is involved with reviewing and helping to select research and other projects focused on non-game wildlife that the department funds annually through its Share with Wildlife Program. She also helps to maintain the Biota Information System of New Mexico, which provides information on the biology and ecology of thousands of species found in New Mexico. Finally, the Ecological and Environmental Planning Division that Seamster is now a part of is leading the process for revising New Mexico’s State Wildlife Action Plan. Publications about this research are forthcoming. Wildlife habitats and wildlife migration are big issues when it comes to effects of climate change. While the planet continues to warm - 2014 was the warmest year on record according to NOAA – warm seasons become longer and cold seasons become shorter in many parts of the US. This allows some species to expand their geographic ranges while other species may experience unsuitable climatic conditions or have to cope with new predators and competitors for food.
Virginia Seamster finished her Ph.D. in Environmental Sciences in 2010 at the University of Virginia. During her post-doc at New Mexico State University she was part of a team of 6 researchers studying 20 terrestrial vertebrate species, which include mammals, birds, reptiles, and amphibians, in Texas, New Mexico, and Oklahoma. "Average annual temperatures are projected to increase across New Mexico and the rest of the south central region that we're focusing on for this project," Seamster says. The team used climate projections for the years 2050 and 2070 from models that were also used in the latest IPCC report. These projections were used as inputs for so-called species niche models, which can estimate a species’ range based on known occurrences of the species. In a reverse engineering kind of approach this allows the researchers to estimate how the distribution of suitable climatic conditions for certain species may change as the regional climate changes. Virginia Seamster’s post-doc research was funded by the South Central Climate Science Center. The center is one of eight climate science centers in the US and conducts applied research in the south-central US with the goal of supporting climate-related decision making in the region. "This type of project could influence future revisions to New Mexico's State Wildlife Action Plan and work being done by wildlife managers in the state, including biologists at the New Mexico Department of Game and Fish,” Seamster explains. "The study is designed to provide information to land managers and decision makers to assist in their respective efforts," says Ken Boykin, ecologist at NMSU and lead investigator of the project. Virginia Seamster has recently transitioned from her wildlife-related post-doc position to a job at the New Mexico Department of Game and Fish. There she is involved with reviewing and helping to select research and other projects focused on non-game wildlife that the department funds annually though its Share with Wildlife Program. She also helps to maintain the Biota Information System of New Mexico, which provides information on the biology and ecology of thousands of species found in New Mexico. Finally, the Ecological and Environmental Planning Division that Seamster is now a part of is leading the process for revising New Mexico’s State Wildlife Action Plan. This post was originally written for the Early Career Climate Forum and posted in June 2015.
The Early Career Climate Forum (ECCF) was started about two and a half years ago, in December 2012. After a small group of students and post-docs attended a great early career training hosted by the Northwest Climate Science Center.The ECCF was a means to stay connected, to expand our network, and to share research ideas and experiences in graduate school or in our professional careers. Soon we learned that there was an actual need for an online forum like ECCF and won support from USGS and the Climate Science Center (CSC) network. With all the support came no shortage of pressure to succeed, though. It seemed everyone was waiting for our great vision to become reality. We had plenty of ideas, but no clue what to start with. So we asked our readers, followers, and subscribers: “What do you want?” and “Who are you, anyway?” We conducted a survey to find out what they wanted to see on the ECCF. The answers included just about everything, from advertising job openings and upcoming conferences, to hosting webinars and actual workshops. We ranked the survey responses based on consensus among survey responders and what we thought we could realistically achieve. The new ECCF website, the discussion forum, and listserv reflect this ongoing process. We are now one of eight priorities identified by the National Education and Training Work Group for the CSCs. In January 2015, we received funding to support the development of the revamped ECCF website, manage content and additional initiatives, and in May 2015 we teamed up with the Northwest Knowledge Network who hosts our new website. Most of us found the ECCF because we knew someone who knew someone. We learned to build an organization, coordinate efforts, set agendas, and determine priorities. Building a platform like ECCF from scratch was a lot of fun and a tremendous learning experience for all of us. It’s been a lot of work, and we are looking forward to many more discussions and projects. Are you interested in getting involved with ECCF? If you want to become part of the Early Career Climate Forum, please email us at info@eccforum.org and tell us about your background, what you do, where you work, and the ways you would like to contribute to ECCF. We look forward to hearing from you! Follow us on Twitter and Facebook. ![]() This post was originally written for the Early Career Climate Forum and posted in November 2014. AGU comes in December, AMS in January, AAG in April – the next big conference is always around the corner – and so might your poster presentation. Here are a few tips for a killer poster that will rock the place. Figure this. Your poster is not a whole journal article printed on a large piece of paper. Avoid large pieces of text and use figures, tables, charts, diagrams, and captions – sort of a journal article but without the text. Use these visuals as aids when you’re explaining your research to someone. Also, check that colors go well together (pie charts, flow charts, bar graphs, illustrations, schema). They might look good on screen, but may be hard to read on print. Less is more. Don’t try to fit every aspect of your research onto the poster. Don’t state every little detail of you research, but focus on the main stuff, one major finding. Keep text short, maybe as bullet-pointed lists. Give people insights into your research hooks to ask follow-up questions. Proportions. Make sure your poster size meets the conference requirements and is not bigger than your allowed space. Test that your figures etc. look good from four or five feet away, that they’re not too small and not too big. Make a test print if necessary. Normal text should be in font sizes between 36 to 44 points, titles about twice that. Fonts. Don’t give your poster fancy fonts to stand out. It’s about the content, not (just) the looks. The rule of thumb is 2 to 3 different fonts, not more. Pick a serif font (e.g., Cambria, Georgia, Garamond, Times) for normal text and a sans-serif font (Arial, Helvetica, Impact, Gill Sans, Futura) for poster title, axes titles, captions etc. Serif fonts are better for flow text because their small “feet” form an imaginary line, making it easier for your eyes to follow the line of text. Sans serifs (sans is French for “without”) meanwhile are best for titles, subtitles, captions, and other shorter pieces of text. Bring business cards. This is a no-brainer, right? People might want to stay in contact with you, so business cards are a must-have. Also, sometimes posters can be left hanging after the poster sessions ended (and without you there). For those cases bring a little pouch (seek your inner Bastelkönig to make one) for your business cards and pin them next to your poster. Alternatively, put your contact info on the poster, or create a QR code with your contact details. QR codes are free to make online (links below), and there are plenty of free reader apps for smartphones. Say something. “What are you working on?” “What’s your research about?” If you hear this, your poster caught someone’s attention. Well done! Now you need a short yet compelling elevator speech. Give yourself 30 seconds to tell the beef of your research, but tell it in a way an 8-year-old child would understand it. Keep it simple and free of jargon or weird acronyms. Advanced level: Ask the person about his or her background and tailor your speech on the fly. A marine biologist might need a different explanation than a volcanologist. Electronic posters. It’s not very common, but every so often poster sessions use electronic posters (they’ll tell you ahead of times). This means you’ll have a big-screen TV to present on. This might sound odd but it’s actually great news for you. Use the screen to present a short (2 to 3 minutes) powerpoint presentation instead of just showing a static “poster”. Find out about the screen size, which ratio (4:3, 16:10, 16:9) and resolution (full-HD, HD) and format your slides accordingly to use the space in the best way possible. Bring monitor cable adapters and save your presentation in PDF format or the slides as JPEG files (Powerpoint and Keynote both let you do this), in case you have to use a computer provided by the conference host. Don’t assume your powerpoint slides will look the same on another computer. More advice on poster design: http://betterposters.blogspot.com (weekly critique of a sample poster) Colin Purrington: Designing Conference Posters Discussions on Poster’s Graphic Design Elements QR Codes |